Home > Nanotechnology Columns > Brian Wang > DARPA Project Highlights for 2010-2011
Brian Wang Z1 Consulting |
Abstract:
DARPA has several projects that will accelerate the development of more advanced nanotechnology. There is Tip-Based Nanofabrication, Nanoscale/Bio-inspired and MetaMaterials, Fundamentals of Nanoscale and Emergent Effects and Engineered Devices and more.
February 5th, 2010
DARPA Project Highlights for 2010-2011
Cross Posted from Nextbigfuture
522 page pdf with DARPAs 2010-2011 budget and project plans
Part 2 of DARPA project highlights for 2010-2011 is here
Tip-Based Nanofabrication (TBN)
($10 million) The Tip-Based Nanofabrication (TBN) program will develop the capability to use Atomic Force Microscope (AFM) cantilevers and tips to controllably manufacture nano-scale structures such as nanowires, nanotubes, and quantum dots for selected defense applications such as optical and biological sensors, diode lasers, light emitting diodes, infrared sensors, high-density interconnects, and quantum computing.
FY 2010 Plans:
- Fabricate a multi-tip array (5 tips) for parallel manufacturing.
- Demonstrate a repeatable tip-based process and manufacturing capability.
FY 2011 Base Plans:
- Fabricate a 30-tip array and associated tool and manufacturing process.
- Demonstrate operation of multi-tip arrays over extended periods of time for use in manufacturing complex components.
- Demonstrate precision and control of the process and functionality of the resulting structures.
($7.5 Million) This program seeks to yield revolutionary advances across several key areas of biology and biomedical technologies of critical importance to the DoD. The overarching principle is to apply microsystem technology (electronics, microfluidics, photonics, micromechanics, etc.) to create leapfrog advances ranging from manipulation of single cells through soldier-worn protective and diagnostic instruments.
On the cell-level of the scale, the aim is to be able to increase by several decades the speed with which we sequence, analyze and functionally edit cellular genomes. With microsystem approaches, a prime goal is to be able to address large populations of cells, select as few as one, capture it, make specific edits to its DNA, and examine or replicate the cell as needed. Such capability will be applicable to a wide variety of problems including biological weapons countermeasures and understanding the underpinnings of human cancers. At an intermediate scale, new insights into the interactions of photons with the nervous system tissues of mammals will allow the development of mm-scale microphotonic implants that have the potential to restore sensory and motor function to individuals with traumatic spinal injury, for example. On the other end of the size scale, a primary goal is to apply microsystem techniques to soldier-protective biomedical systems.
The goal is to bring exceptionally potent technical approaches to bear on biological and biomedical applications where their capabilities will be significant force multipliers for the DoD. [The goal is super-soldiers]
FY 2011 Base Plans:
- Demonstrate isolation and manipulation of primitive pluripotent stem cells.
- Investigate problem statements that can be addressed using quantum information science and technology.
- Develop roadmap to algorithm to compute protein folding using quantum computing, as example of speed-up enabled by quantum simulations.
- Demonstrate microsystems elements such as inductors and microactuators using high permeability as proof of feasibility to integrate magnetic micro/nanomaterials in wafer-scale processes.
- Investigate physical mechanism of cross grain boundary transport in nanocrystalline materials.
- Simulate RF performance limits of nanocrystalline channel transistors including current density limits.
Biological Adaptation, Assembly and Manufacturing AKA Bone Putty
(About $9 million in FY2011)
FY 2009 Accomplishments:
- Developed complete mathematical model for fracture putty/bone biomechanics.
- Developed fracture putty material which approximates the mechanical properties and internal structure of natural bone.
- Demonstrated mechanical properties of fracture putty for in vitro model of bone fracture.
- Identified newly discovered bacteria with unique enzymatic activity on crystalline cellulose.
FY 2010 Plans:
- Develop novel resorbable wet adhesives with the mechanical properties of natural bone, for inclusion into fracture putty formulation.
- Demonstrate fracture putty in small animal model of bone fracture.
- Initiate large animal studies of fracture putty for bone fracture repair.
- Identify candidate fundamental mechanisms for controlling antibody stability and affinity.
- Demonstrate the ability to produce an antibody with thermal stability from room temperature up to 60 degrees Celsius.
- Demonstrate the ability to produce an antibody with selectable affinity as measured by a binding constant (KD=dissociation constant) of 10 to the negative eighth power.
Nanostructure in Biology
ABout $2.4 million in FY2011
The Nanostructure in Biology program will investigate the nanostructure properties of biological materials to better understand their behavior and accelerate their exploitation for Defense applications. Enable the rapid design of new biosensors against previously unknown threats and the design of advanced catalysts based on biological activity to produce new materials of interest to DoD (e.g., tailored explosives). The program will also create technology to reliably integrate nanoscale and microsystems payloads on insects that will extract power, control locomotion, and also carry DoD relevant sensors.
FY 2009 Accomplishments:
- Created a functional model of the mammalian object recognition pathway that is biologically valid and suitable for translation to algorithm development.
- Optimized Micro Electro Mechanical Systems (MEMS) components for locomotion control, communications and power generation to consume less power and to reduce size, weight and cost.
- Designed two protein-protein binding pairs with binding constants below one hundred nanomolar.
- Extended catalytic activity of de novo designed enzymes to ten million for known chemistries.
FY 2010 Plans:
- Discover methods for precise flight control use in combinations of MEMS techniques originating in the previous fiscal year.
- Develop neural interfaces to insect sensors to compliment electronic sensors.
- Develop a protein that inhibits the activity of influenza by preferential binding.
- Design de novo inhibitory protein of smallpox.
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||